Here's a complete guide to creating a MAUI app that communicates via voice only, with language detection and voice response options. This solution uses entirely open-source technologies.
Architecture Overview
Speech Recognition: Whisper.cpp (OpenAI's Whisper model ported to C++)
AI Chat: llama.cpp (Local LLM) or Ollama API
Text-to-Speech: Piper TTS (Open-source neural TTS)
Database: SQLite for conversation history
UI: .NET MAUI with background screensaver
Step 1: Set Up the MAUI Project
dotnet new maui -n AIVoiceChat cd AIVoiceChat
Step 2: Add Required NuGet Packages
dotnet add package Microsoft.Data.Sqlite dotnet add package Community.Toolkit.Maui dotnet add package SkiaSharp.Views.Maui.Controls
Step 3: MainPage.xaml
<?xml version="1.0" encoding="utf-8" ?> <ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:controls="clr-namespace:AIVoiceChat.Controls" x:Class="AIVoiceChat.MainPage" BackgroundColor="Black"> <Grid> <!-- Screensaver Layer --> <controls:ScreensaverView x:Name="screensaver" IsVisible="True" /> <!-- Conversation Layer (semi-transparent) --> <ScrollView x:Name="conversationScroll" BackgroundColor="#80000000" VerticalOptions="End" Margin="20"> <StackLayout x:Name="conversationContainer" Spacing="10"> <!-- Messages will be added here --> </StackLayout> </ScrollView> <!-- Voice Control Layer --> <Grid VerticalOptions="End" Margin="20" RowSpacing="10"> <Grid.RowDefinitions> <RowDefinition Height="Auto" /> <RowDefinition Height="Auto" /> </Grid.RowDefinitions> <Button x:Name="listenButton" Text="Hold to Speak" BackgroundColor="#4CAF50" TextColor="White" CornerRadius="20" HeightRequest="60" Pressed="OnListenPressed" Released="OnListenReleased" /> <Label x:Name="statusLabel" Text="Ready" TextColor="White" HorizontalOptions="Center" Grid.Row="1" /> </Grid> </Grid> </ContentPage>
Step 4: Screensaver Control (ScreensaverView.xaml)
<ContentView xmlns="http://schemas.microsoft.com/dotnet/2021/maui" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:skia="clr-namespace:SkiaSharp.Views.Maui.Controls;assembly=SkiaSharp.Views.Maui.Controls" x:Class="AIVoiceChat.Controls.ScreensaverView"> <skia:SKCanvasView x:Name="canvasView" PaintSurface="OnCanvasViewPaintSurface" EnableTouchEvents="True" Touch="OnCanvasViewTouch" /> </ContentView>
Step 5: Screensaver Code-behind (ScreensaverView.xaml.cs)
using SkiaSharp; using SkiaSharp.Views.Maui; namespace AIVoiceChat.Controls; public partial class ScreensaverView : ContentView { private readonly List<Bubble> _bubbles = new(); private readonly Random _random = new(); private bool _isAnimating = true; public ScreensaverView() { InitializeComponent(); StartAnimation(); } private void StartAnimation() { // Create initial bubbles for (int i = 0; i < 20; i++) { _bubbles.Add(new Bubble { X = _random.Next(0, (int)Width), Y = _random.Next(0, (int)Height), Radius = _random.Next(10, 50), SpeedX = _random.Next(-3, 3), SpeedY = _random.Next(-3, 3), Color = SKColor.FromHsl(_random.Next(0, 360), 100, 50) }); } Device.StartTimer(TimeSpan.FromMilliseconds(16), () => { if (!_isAnimating) return false; UpdateBubbles(); canvasView.InvalidateSurface(); return _isAnimating; }); } private void UpdateBubbles() { if (canvasView.CanvasSize.IsEmpty) return; for (int i = 0; i < _bubbles.Count; i++) { var bubble = _bubbles[i]; // Update position bubble.X += bubble.SpeedX; bubble.Y += bubble.SpeedY; // Bounce off edges if (bubble.X - bubble.Radius < 0 || bubble.X + bubble.Radius > canvasView.CanvasSize.Width) bubble.SpeedX *= -1; if (bubble.Y - bubble.Radius < 0 || bubble.Y + bubble.Radius > canvasView.CanvasSize.Height) bubble.SpeedY *= -1; } } private void OnCanvasViewPaintSurface(object sender, SKPaintSurfaceEventArgs e) { var surface = e.Surface; var canvas = surface.Canvas; canvas.Clear(SKColors.Black); foreach (var bubble in _bubbles) { var paint = new SKPaint { Color = bubble.Color, IsAntialias = true, Style = SKPaintStyle.Fill }; canvas.DrawCircle(bubble.X, bubble.Y, bubble.Radius, paint); } } private void OnCanvasViewTouch(object sender, SKTouchEventArgs e) { if (e.ActionType == SKTouchAction.Pressed) { // Add a new bubble where touched _bubbles.Add(new Bubble { X = e.Location.X, Y = e.Location.Y, Radius = _random.Next(10, 50), SpeedX = _random.Next(-3, 3), SpeedY = _random.Next(-3, 3), Color = SKColor.FromHsl(_random.Next(0, 360), 100, 50) }); e.Handled = true; } } private class Bubble { public float X { get; set; } public float Y { get; set; } public float Radius { get; set; } public float SpeedX { get; set; } public float SpeedY { get; set; } public SKColor Color { get; set; } } }
Step 6: MainPage Code-behind (MainPage.xaml.cs)
using AIVoiceChat.Controls; using CommunityToolkit.Maui.Core; using CommunityToolkit.Maui.Views; using Microsoft.Data.Sqlite; using System.Collections.ObjectModel; using System.Text; namespace AIVoiceChat; public partial class MainPage : ContentPage { private readonly IDatabaseService _database; private readonly ISpeechToText _speechToText; private readonly ITextToSpeech _textToSpeech; private readonly IAIChatService _aiChatService; private CancellationTokenSource _listenCts; private bool _isListening = false; public MainPage(IDatabaseService database, ISpeechToText speechToText, ITextToSpeech textToSpeech, IAIChatService aiChatService) { InitializeComponent(); _database = database; _speechToText = speechToText; _textToSpeech = textToSpeech; _aiChatService = aiChatService; LoadConversationHistory(); } private async void LoadConversationHistory() { var history = await _database.GetRecentConversationsAsync(10); foreach (var message in history.Reverse()) { AddMessageToUI(message); } } private void AddMessageToUI(ConversationMessage message) { var messageLabel = new Label { Text = $"{message.Speaker}: {message.Text}", TextColor = message.IsUser ? Colors.LightBlue : Colors.LightGreen, FontSize = 16, Margin = new Thickness(10, 5) }; conversationContainer.Children.Insert(0, messageLabel); } private async void OnListenPressed(object sender, EventArgs e) { if (_isListening) return; _isListening = true; statusLabel.Text = "Listening..."; _listenCts = new CancellationTokenSource(); try { var recognitionResult = await _speechToText.ListenAsync(_listenCts.Token); if (!string.IsNullOrEmpty(recognitionResult.Text)) { // Add user message to UI and DB var userMessage = new ConversationMessage { Text = recognitionResult.Text, IsUser = true, Timestamp = DateTime.Now, Language = recognitionResult.Language }; AddMessageToUI(userMessage); await _database.SaveMessageAsync(userMessage); // Get AI response statusLabel.Text = "Thinking..."; var aiResponse = await _aiChatService.GetResponseAsync(recognitionResult.Text); // Add AI response to UI and DB var aiMessage = new ConversationMessage { Text = aiResponse.Text, IsUser = false, Timestamp = DateTime.Now, Language = aiResponse.Language, VoiceType = Preferences.Get("SelectedVoice", "female") }; AddMessageToUI(aiMessage); await _database.SaveMessageAsync(aiMessage); // Speak the response await _textToSpeech.SpeakAsync(aiResponse.Text, aiResponse.Language, aiMessage.VoiceType); } } catch (Exception ex) { statusLabel.Text = $"Error: {ex.Message}"; } finally { _isListening = false; statusLabel.Text = "Ready"; } } private void OnListenReleased(object sender, EventArgs e) { _listenCts?.Cancel(); _isListening = false; statusLabel.Text = "Ready"; } }
Step 7: Database Service
using Microsoft.Data.Sqlite; using System.Collections.ObjectModel; namespace AIVoiceChat; public interface IDatabaseService { Task SaveMessageAsync(ConversationMessage message); Task<ObservableCollection<ConversationMessage>> GetRecentConversationsAsync(int count); Task InitializeAsync(); } public class DatabaseService : IDatabaseService { private const string DatabaseFilename = "conversations.db3"; private static string DatabasePath => Path.Combine(FileSystem.AppDataDirectory, DatabaseFilename); public async Task InitializeAsync() { if (!File.Exists(DatabasePath)) { using var connection = new SqliteConnection($"Data Source={DatabasePath}"); await connection.OpenAsync(); var command = connection.CreateCommand(); command.CommandText = @" CREATE TABLE IF NOT EXISTS Messages ( Id INTEGER PRIMARY KEY AUTOINCREMENT, Text TEXT NOT NULL, IsUser INTEGER NOT NULL, Timestamp DATETIME NOT NULL, Language TEXT, VoiceType TEXT )"; await command.ExecuteNonQueryAsync(); } } public async Task SaveMessageAsync(ConversationMessage message) { using var connection = new SqliteConnection($"Data Source={DatabasePath}"); await connection.OpenAsync(); var command = connection.CreateCommand(); command.CommandText = @" INSERT INTO Messages (Text, IsUser, Timestamp, Language, VoiceType) VALUES (@text, @isUser, @timestamp, @language, @voiceType)"; command.Parameters.AddWithValue("@text", message.Text); command.Parameters.AddWithValue("@isUser", message.IsUser ? 1 : 0); command.Parameters.AddWithValue("@timestamp", message.Timestamp); command.Parameters.AddWithValue("@language", message.Language ?? ""); command.Parameters.AddWithValue("@voiceType", message.VoiceType ?? ""); await command.ExecuteNonQueryAsync(); } public async Task<ObservableCollection<ConversationMessage>> GetRecentConversationsAsync(int count) { var messages = new ObservableCollection<ConversationMessage>(); using var connection = new SqliteConnection($"Data Source={DatabasePath}"); await connection.OpenAsync(); var command = connection.CreateCommand(); command.CommandText = @" SELECT Text, IsUser, Timestamp, Language, VoiceType FROM Messages ORDER BY Timestamp DESC LIMIT @count"; command.Parameters.AddWithValue("@count", count); using var reader = await command.ExecuteReaderAsync(); while (await reader.ReadAsync()) { messages.Add(new ConversationMessage { Text = reader.GetString(0), IsUser = reader.GetBoolean(1), Timestamp = reader.GetDateTime(2), Language = reader.IsDBNull(3) ? null : reader.GetString(3), VoiceType = reader.IsDBNull(4) ? null : reader.GetString(4) }); } return messages; } } public class ConversationMessage { public string Text { get; set; } public bool IsUser { get; set; } public DateTime Timestamp { get; set; } public string Language { get; set; } public string VoiceType { get; set; } }
Step 8: Speech-to-Text Service (Whisper.cpp)
using System.Diagnostics; namespace AIVoiceChat; public interface ISpeechToText { Task<SpeechRecognitionResult> ListenAsync(CancellationToken cancellationToken); } public class SpeechRecognitionResult { public string Text { get; set; } public string Language { get; set; } } public class WhisperSpeechToText : ISpeechToText { public async Task<SpeechRecognitionResult> ListenAsync(CancellationToken cancellationToken) { try { // Record audio (platform specific) var audioFile = await RecordAudioAsync(); // Use whisper.cpp to process audio var result = await ProcessWithWhisper(audioFile); return new SpeechRecognitionResult { Text = result.Text, Language = result.Language }; } catch (Exception ex) { Debug.WriteLine($"Speech recognition error: {ex}"); return new SpeechRecognitionResult(); } } private async Task<string> RecordAudioAsync() { // Platform-specific audio recording // For Android: // var audioFile = Path.Combine(FileSystem.CacheDirectory, "recording.wav"); // Use Android.Media.MediaRecorder // For iOS: // Use AVAudioRecorder // For Windows: // Use NAudio or Windows.Media.Capture await Task.Delay(1000); // Simulate recording return "recording.wav"; } private async Task<SpeechRecognitionResult> ProcessWithWhisper(string audioFile) { // This would call the whisper.cpp executable // You need to include the whisper.cpp binaries in your app var startInfo = new ProcessStartInfo { FileName = "whisper.cpp/main", Arguments = $"-m models/ggml-base.en.bin -f {audioFile} --language auto", RedirectStandardOutput = true, UseShellExecute = false, CreateNoWindow = true }; using var process = new Process { StartInfo = startInfo }; process.Start(); var output = await process.StandardOutput.ReadToEndAsync(); await process.WaitForExitAsync(); // Parse whisper output return ParseWhisperOutput(output); } private SpeechRecognitionResult ParseWhisperOutput(string output) { // Simple parsing - you'd need to adjust based on actual whisper output var lines = output.Split('\n'); var text = new StringBuilder(); string detectedLanguage = "en"; // Default foreach (var line in lines) { if (line.StartsWith("[Detected language:")) { detectedLanguage = line.Split(':')[1].Trim().Substring(0, 2); } else if (!string.IsNullOrWhiteSpace(line) && !line.StartsWith("[")) { text.AppendLine(line.Trim()); } } return new SpeechRecognitionResult { Text = text.ToString().Trim(), Language = detectedLanguage }; } }
Step 9: Text-to-Speech Service (Piper TTS)
using System.Diagnostics; namespace AIVoiceChat; public interface ITextToSpeech { Task SpeakAsync(string text, string language, string voiceType); } public class PiperTextToSpeech : ITextToSpeech { public async Task SpeakAsync(string text, string language, string voiceType) { try { // Get the appropriate voice model based on language and voiceType var voiceModel = GetVoiceModel(language, voiceType); if (voiceModel == null) { Debug.WriteLine($"No voice model found for {language}/{voiceType}"); return; } // Call piper TTS await ProcessWithPiper(text, voiceModel); } catch (Exception ex) { Debug.WriteLine($"TTS error: {ex}"); } } private string GetVoiceModel(string language, string voiceType) { // Map language and voiceType to specific piper voice models // You would need to include these models in your app resources // Example mapping: if (language.StartsWith("en")) { return voiceType switch { "male" => "models/piper/en/en_US-lessac-medium.onnx", "female" => "models/piper/en/en_US-amy-medium.onnx", "boy" => "models/piper/en/en_US-hfc_male-medium.onnx", "girl" => "models/piper/en/en_US-hfc_female-medium.onnx", "oldman" => "models/piper/en/en_US-danny-medium.onnx", _ => "models/piper/en/en_US-amy-medium.onnx" }; } else if (language.StartsWith("es")) { return "models/piper/es/es_ES-davefx-medium.onnx"; } // Add more languages as needed return null; } private async Task ProcessWithPiper(string text, string voiceModel) { // This would call the piper executable // You need to include the piper binaries in your app var tempFile = Path.Combine(FileSystem.CacheDirectory, "tts_output.wav"); var startInfo = new ProcessStartInfo { FileName = "piper/piper", Arguments = $"--model {voiceModel} --output_file {tempFile}", RedirectStandardInput = true, UseShellExecute = false, CreateNoWindow = true }; using var process = new Process { StartInfo = startInfo }; process.Start(); // Send text to piper await process.StandardInput.WriteLineAsync(text); process.StandardInput.Close(); await process.WaitForExitAsync(); // Play the generated audio (platform specific) await PlayAudio(tempFile); } private async Task PlayAudio(string filePath) { // Platform-specific audio playback // For Android: Use Android.Media.MediaPlayer // For iOS: Use AVAudioPlayer // For Windows: Use NAudio or Windows.Media.Playback await Task.Delay(500); // Simulate playback } }
Step 10: AI Chat Service (llama.cpp or Ollama)
using System.Diagnostics; using System.Text; namespace AIVoiceChat; public interface IAIChatService { Task<AIResponse> GetResponseAsync(string input); } public class AIResponse { public string Text { get; set; } public string Language { get; set; } } public class LocalAIChatService : IAIChatService { public async Task<AIResponse> GetResponseAsync(string input) { try { // Call llama.cpp or Ollama var result = await ProcessWithLlama(input); return new AIResponse { Text = result, Language = "en" // Assume English for now }; } catch (Exception ex) { Debug.WriteLine($"AI error: {ex}"); return new AIResponse { Text = "I encountered an error processing your request.", Language = "en" }; } } private async Task<string> ProcessWithLlama(string input) { // This would call the llama.cpp executable // You need to include the llama.cpp binaries and model in your app var startInfo = new ProcessStartInfo { FileName = "llama.cpp/main", Arguments = "-m models/ggml-model-q4_0.bin --temp 0.7 --repeat_penalty 1.1", RedirectStandardInput = true, RedirectStandardOutput = true, UseShellExecute = false, CreateNoWindow = true }; using var process = new Process { StartInfo = startInfo }; process.Start(); // Send prompt var prompt = $"User: {input}\nAI:"; await process.StandardInput.WriteLineAsync(prompt); process.StandardInput.Close(); // Read response var output = new StringBuilder(); while (!process.StandardOutput.EndOfStream) { var line = await process.StandardOutput.ReadLineAsync(); if (line == null) break; output.AppendLine(line); // Simple heuristic to stop when we see certain tokens if (line.Contains("User:") || line.Contains("\n\n")) break; } await process.WaitForExitAsync(); return output.ToString().Trim(); } }
Step 11: Settings Page
<?xml version="1.0" encoding="utf-8" ?> <ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="AIVoiceChat.SettingsPage" Title="Settings"> <ScrollView> <StackLayout Padding="20" Spacing="15"> <Label Text="Voice Settings" FontSize="18" FontAttributes="Bold" /> <Picker x:Name="voicePicker" Title="Select Voice" ItemsSource="{Binding VoiceOptions}" ItemDisplayBinding="{Binding DisplayName}" /> <Label Text="AI Model Settings" FontSize="18" FontAttributes="Bold" Margin="0,20,0,0" /> <Picker x:Name="modelPicker" Title="Select AI Model" ItemsSource="{Binding ModelOptions}" /> <Button Text="Save Settings" Clicked="OnSaveClicked" BackgroundColor="#4CAF50" TextColor="White" CornerRadius="20" HeightRequest="50" /> </StackLayout> </ScrollView> </ContentPage>
using System.Collections.ObjectModel; using System.Globalization; namespace AIVoiceChat; public partial class SettingsPage : ContentPage { public ObservableCollection<VoiceOption> VoiceOptions { get; } = new() { new VoiceOption { Id = "female", DisplayName = "Female Voice" }, new VoiceOption { Id = "male", DisplayName = "Male Voice" }, new VoiceOption { Id = "boy", DisplayName = "Boy's Voice" }, new VoiceOption { Id = "girl", DisplayName = "Girl's Voice" }, new VoiceOption { Id = "oldman", DisplayName = "Old Man's Voice" } }; public ObservableCollection<string> ModelOptions { get; } = new() { "Small (Fast)", "Medium (Balanced)", "Large (High Quality)" }; public SettingsPage() { InitializeComponent(); BindingContext = this; // Load saved settings var savedVoice = Preferences.Get("SelectedVoice", "female"); var savedModel = Preferences.Get("SelectedModel", 1); voicePicker.SelectedItem = VoiceOptions.FirstOrDefault(v => v.Id == savedVoice); modelPicker.SelectedIndex = savedModel; } private void OnSaveClicked(object sender, EventArgs e) { if (voicePicker.SelectedItem is VoiceOption selectedVoice) { Preferences.Set("SelectedVoice", selectedVoice.Id); } Preferences.Set("SelectedModel", modelPicker.SelectedIndex); DisplayAlert("Success", "Settings saved", "OK"); } } public class VoiceOption { public string Id { get; set; } public string DisplayName { get; set; } }
Step 12: MauiProgram.cs
using AIVoiceChat.Services; using CommunityToolkit.Maui; using Microsoft.Extensions.Logging; using SkiaSharp.Views.Maui.Controls.Hosting; namespace AIVoiceChat; public static class MauiProgram { public static MauiApp CreateMauiApp() { var builder = MauiApp.CreateBuilder(); builder .UseMauiApp<App>() .UseSkiaSharp() .UseMauiCommunityToolkit() .ConfigureFonts(fonts => { fonts.AddFont("OpenSans-Regular.ttf", "OpenSansRegular"); fonts.AddFont("OpenSans-Semibold.ttf", "OpenSansSemibold"); }); // Register services builder.Services.AddSingleton<IDatabaseService, DatabaseService>(); builder.Services.AddSingleton<ISpeechToText, WhisperSpeechToText>(); builder.Services.AddSingleton<ITextToSpeech, PiperTextToSpeech>(); builder.Services.AddSingleton<IAIChatService, LocalAIChatService>(); // Register pages builder.Services.AddTransient<MainPage>(); builder.Services.AddTransient<SettingsPage>(); // Initialize database var dbService = builder.Services.BuildServiceProvider().GetRequiredService<IDatabaseService>(); dbService.InitializeAsync().Wait(); #if DEBUG builder.Logging.AddDebug(); #endif return builder.Build(); } }
Step 13: App.xaml.cs
namespace AIVoiceChat; public partial class App : Application { public App() { InitializeComponent(); // Set default voice if not set if (!Preferences.ContainsKey("SelectedVoice")) { Preferences.Set("SelectedVoice", "female"); } MainPage = new AppShell(); } } public class AppShell : Shell { public AppShell() { var mainPage = new MainPage( ServiceProvider.GetService<IDatabaseService>(), ServiceProvider.GetService<ISpeechToText>(), ServiceProvider.GetService<ITextToSpeech>(), ServiceProvider.GetService<IAIChatService>()); Items.Add(new ShellContent { Title = "AI Voice Chat", Content = mainPage }); Items.Add(new ShellContent { Title = "Settings", Content = new SettingsPage() }); } }
Step 14: Platform-Specific Implementations
For each platform (Android, iOS, Windows), you'll need to implement:
Audio Recording: Capture microphone input
Audio Playback: Play the TTS output
Native Libraries: Include the whisper.cpp, llama.cpp, and piper binaries
Example for Android (Platforms/Android/MainActivity.cs):
using Android.Content.PM; using Android.OS; using Android.Runtime; using AndroidX.Core.App; using AndroidX.Core.Content; [assembly: UsesPermission(Android.Manifest.Permission.RecordAudio)] [assembly: UsesPermission(Android.Manifest.Permission.ModifyAudioSettings)] namespace AIVoiceChat.Platforms.Android; [Activity(Theme = "@style/Maui.SplashTheme", MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation | ConfigChanges.UiMode | ConfigChanges.ScreenLayout | ConfigChanges.SmallestScreenSize | ConfigChanges.Density)] public class MainActivity : MauiAppCompatActivity { protected override void OnCreate(Bundle savedInstanceState) { base.OnCreate(savedInstanceState); // Request microphone permission if not granted if (ContextCompat.CheckSelfPermission(this, Android.Manifest.Permission.RecordAudio) != Permission.Granted) { ActivityCompat.RequestPermissions(this, new[] { Android.Manifest.Permission.RecordAudio }, 1); } // Copy model files from assets to app data directory CopyModelFiles(); } private void CopyModelFiles() { var modelsDir = new Java.IO.File(ApplicationContext.FilesDir, "models"); if (!modelsDir.Exists()) modelsDir.Mkdirs(); // Copy whisper model CopyAssetToFile("ggml-base.en.bin", new Java.IO.File(modelsDir, "ggml-base.en.bin")); // Copy piper voices var piperDir = new Java.IO.File(modelsDir, "piper"); if (!piperDir.Exists()) piperDir.Mkdirs(); // Copy llama model CopyAssetToFile("ggml-model-q4_0.bin", new Java.IO.File(modelsDir, "ggml-model-q4_0.bin")); } private void CopyAssetToFile(string assetName, Java.IO.File destination) { if (destination.Exists()) return; using var assetStream = Assets.Open(assetName); using var fileStream = new Java.IO.FileOutputStream(destination); assetStream.CopyTo(fileStream); } }
Step 15: Include Model Files
Download the required models:
whisper.cpp base.en model
llama.cpp 7B quantized model
Piper TTS voice models for your target languages
Add them to your project as MauiAssets:
Create a "Resources/Raw" folder in your .NET MAUI project
Add model files with Build Action = MauiAsset
Deployment Notes
This app will be large due to the included models (several GB)
Consider offering model downloads on first run to reduce initial app size
For better performance, use quantized models (e.g., q4_0 for llama.cpp)
Limitations
Local AI models may be slow on mobile devices
Large memory requirements for models
Voice quality may not match commercial TTS services
Alternatives
If local processing is too resource-intensive, you could:
Use OpenAI's Whisper API for speech recognition
Use OpenAI's ChatGPT for responses
Use Azure or Google Cloud TTS services
However, these would require internet connectivity and may have costs associated.
This implementation provides a completely offline, open-source solution for voice-based AI conversation with conversation history and a visually appealing interface.
No comments:
Post a Comment